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Introduction

The data files present here consist of five video files of the key experimental runs
featured in the paper.

The video files are vital for understanding the data and conclusions present in the
paper, but for obvious technical reasons need to be included as digital-only
supplements.

In addition, 12 image files are presented here as auxiliary figures, as are 3 tables.

Auxiliary Videos

(msl1) Video 1 | High-speed (originally 1000 fps, now 60 fps) footage of Run 21,
first depicted in Fig. 1. 16 cm blast depth, 1.5 MPa initial pressure.

(ms2) Video 2 | High-speed (originally 1000 fps, now 60 fps) footage of Run 22,
first depicted in Fig. 3. 8 cm blast depth, 1.5 MPa initial pressure.

(ms3) Video 3 | High-speed (originally 1000 fps, now 60 fps) footage of Run 10,
first depicted in Fig. 4. 24 cm blast depth, 2 MPa initial pressure.

(ms4) Video 4 | High-speed (originally 1000 fps, now 60 fps) footage of Run 20,
first depicted in Fig. 8. 24 cm blast depth, 1.5MPa initial pressure.

(ms5) Video 5 | High-speed (originally 1000 fps, now 30 fps) footage of Run 19,
first depicted in Fig. 8. 24 cm blast depth, 2 MPa initial pressure.




Auxiliary Figures
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Figure S1 | A diagrammatical representation of the experimental set up used in these

runs, (after Ross et al., 2008b). The addition to the previous set-up of a pressure sensor and

a force transducer inside the crucible (red circle), additional pressure sensors SIKA 1 (purple

circle) & 2 (blue circle) in the back wall of the apparatus, are shown. Runs were grouped

together based on the initial pressure of the compressed argon gas (0.5 MPa, 1 MPa, 1.5 MPa,

and 2 MPa), in order of either three ascending runs from deep to shallow crucible depths,

three descending runs from shallow to deep crucible depths, or single runs.
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Figure S2 | Driving pressures and force record for Run 17. The driving pressure sensor
located within the crucible opposite the gas line, and the force transducer below the crucible.
SIKA 1 and 2 are pressure sensors located behind the host white bead mass, which was in
contact with them; this is why their initial pressure readings are slightly above 0 MPa. The
pressure peaks observed for each sensor are in accordance with the timing of the expanding
gas cavity’s propagation as it moved through the crucible, then upwards, coming into contact
with SIKA 2; SIKA 1 is below the cavity in this run. For the pressure and force curves
beyond the initial declines, the sensors are only registering system resonance. At the pressure
(including SIKA 2) and force peaks, the only the beginnings of the surface and viewing wall
deformaiton are observed. As the t=127 ms frame demonstrates, the cavity as an inverted
cone shape is visible at 67 ms after the pressure peak is recorded — indicating there is a lag
time between the pressure peak registering on the pressure sensors and the displacement of

the beads.
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Figure S3 | Crucible Depth v Maximum Doming Angle for all runs in this study. The
maximum doming angle was measured at the outer edge of the dome. Angles were measured
from the centre of the dome outwards towards the peripheries until collapse began to occur
(white lines, inset frame). Zero degrees = horizontal plane to the bead mass surface.

Approximate trend lines for each initial pressure set are shown.
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Figure S4 | Particle Image Velocimetry (PIV) analyses for a descending 1 MPa blast
series {JPIV® open-source software}. The three lower frames show the post-shot craters
and diatreme deposits for each successive run. The PIV-calculated displacements depict the
overall displacements from t=0 ms to the final post shot crater (at t=900 ms) at the end of

each run; thus, the time-averaged transient craters are modelled for each run.
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Figure S5 | Particle Image Velocimetry (PIV) analyses for a descending 2 MPa blast
series {JPIV® open-source software}. The three lower frames show the post-shot craters

and diatreme deposits for each successive run.
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Figure S6 | Particle Image Velocimetry (PI1V) analyses for an ascending 1.5 MPa blast
series {JPIV® open-source software}. The three lower frames show the post-shot craters

and diatreme deposits for each successive run.
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Figure S7 | Particle Image Velocimetry (PI1V) analyses for two descending blast series (1,
2 MPA) and one ascending blast series (1.5 MPa) {JPIV® open-source software}. Due to
time constraints, no ascending blast series of 1 or 2 MPa initial pressures were conducted;
thus, a comparison of the 1.5 MPa ascending series with two descending blast series with

initial pressures of +/- 33% is made.
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Figure S8 | Crucible Depth v Primary Cavity Volume & Duration for 0.5 & 1.5 MPa

initial pressures.
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Figure S9 | Crucible Depth v Primary Cavity Volume & Duration for 1 & 2 MPa initial

pressures.
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Figure S10 | Primary Cavity Volume v Secondary Cavity Volume for all runs used

in this study. The R? value for the approximate trend line is shown.
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Figure S11 | Secondary Cavity Duration v Secondary Cavity Volume for all runs

used in this study. The R? value for the approximate trend line is shown.
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Figure S12 | A schematic illustration (bottom) of the evolution of a maar-diatreme
system with a deepening blast series, as depicted by the accompanying PIV images (top).
A depicts an initial, large explosion generating a sizeable crater, which is then modified and
flatted in B as a deepening series of phreatomagmatic blasts — which tracks the water table —
vertically focuses the ejection of debris, causing a higher proportion to fall back into the
transient crater as the eruption progresses. Syn- and post-eruption subsidence contribute to the

flattening of the crater in C.
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Crucible opening depth | o procoire ) ) Maximum doming angle
Run Number be|OYV overlying (MPa) Doming Base Diameter (m)° from horizontal (°)°
stratigraphy (m)

50 0.08 1 0.175 69
6 0.16 1 0.170 65
0.24 1 0.155 50

0.08 2 0.230 92

0.16 2 0.205 81

10 0.24 2 0.180 69
1 0.08 0.5 0.145 66
12 0.16 0.5 0.130 59
13 0.24 0.5 0.100 19
14 0.08 1 0.175 51
15 0.16 1 0.135 57
16 0.24 1 0.150 59
17 0.08 2 0.210 96
18 0.16 2 0.205 84
19 0.24 2 0.200 60
20 0.24 1.5 0.200 30
21 0.16 15 0.175 76
22 0.08 15 0.205 95
23° 0.24 2 0.215 38

®Runs used in this paper involved a constant red bead mass (68g) and pressurised gas release time (300ms).
®Approximate distance between the dome's outer lateral edges prior to collapse.

“Measured from the center of the dome outwards to the peripheries until collapse occurs.

“First crater-forming blasts in a series of successive runs are shown in bold.

®This run used a paper diaphragm to cover the orifice within the crucible instead of a rubber valve.

Table S1 | Selected experimental runs with associated doming phenomenology®. Early
runs were tests of the experimental system; later runs featured variations to the system not
addressed here. Runs 1-4 were test runs using vastly longer valve opening times and different
bead mass set-ups, in order to test the pressure and force sensors, and the recording

equipment.
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Table S2 | Selected experimental runs with associated volume data for the generated

craters®.
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Table S3 | Selected experimental runs with associated volume and duration data for the
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