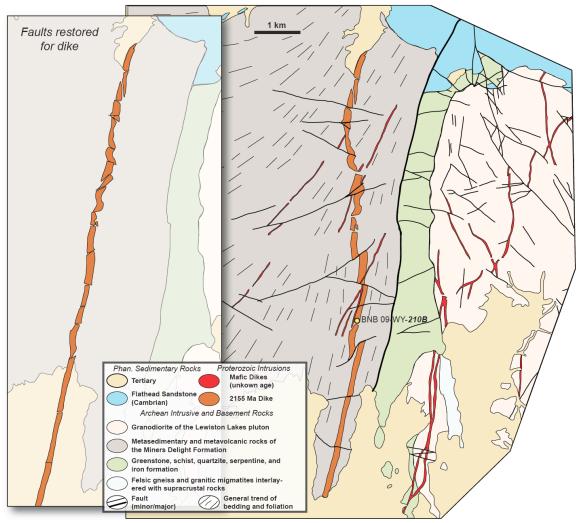
Supplementary Material for:

Palaeomagnetism, geochronology, and geochemistry of the Palaeoproterozoic Rabbit Creek and Powder River dyke swarms – Implications for Wyoming in supercraton Superia

Taylor M. Kilian, Wouter Bleeker, Kevin Chamberlain, David A.D. Evans, and Brian Cousens


Supplementary Table 1. Palaeomagnetic and geochronologic sample localities

	N	W geochronologic sample localities		
Site ID	deg.	min.	deg.	min.
T09BH8	44	10.700	106	56.781
Т09ВН9	44	14.503	106	59.069
T09BH11	44	12.485	106	54.803
T09BH13	44	14.720	106	56.371
T09BH14	44	20.752	106	53.721
BNB09-WY-202b	44	20.752	106	53.721
T09BH15	44	14.380	106	55.945
BNB09-WY-204	44	14.380	106	55.945
T09BH16	44	14.743	106	56.376
T09BH17	44	14.802	106	56.368
T09BH18	44	16.133	106	56.920
T09BH21	44	16.104	106	57.202
T09BH22	44	9.019	107	3.522
BNB09-WY-208a	44	9.271	107	3.331
T09BH23	44	4.364	106	59.746
T09BH24	44	4.182	106	59.978
BNB09-WY-207b	44	4.182	106	59.978
T09BH25	44	3.344	107	0.722
T09BH26	44	9.277	107	3.300
T10BH58	44	15.616	106	51.600
T10BH59	44	15.630	106	51.389
T10BH73	44	10.290	107	2.438
T12SHM1	44	11.377	107	0.379
T12SHM2	44	11.352	107	0.278
T12SHM3	44	11.464	107	0.343
BNB09-WY-210b	42	24.925	108	30.871

All coordinates given in WGS84 datum. All sites in italics refer to geochronologic samples. Sites in bold yielded reliable palaeomagnetic data.

Supplementary Figure 1: Photograph taken of South Pass dyke [WGS 84: N 42°24.94', W 108°30.91'] showing quartz diorite core and gabbroic margin. Sample for geochronology was taken near the core of the dyke from the cliff to the near left.

Supplementary Figure 2: The South Pass dyke appears to trend north before faults are restored along its length. Displacement of these blocks is likely due to a lateral thrust ramp that underlies this portion of the uplift, or could be due to differential amounts of uplift alond the Wind River thrust. The metasedimentary rocks (gray) likely accommodated a large amount of strain trough simple shear along bedding planes. Map modified from Hausel (1991).