During the later 1980s and the 90s, many workers including John Wadsworth, Brian Upton, Henry Emeleus, Jean Bédard and Johannes Volker challenged some accepted models for the Rum layered intrusions. In the Eastern Layered Intrusion, it was suggested that the peridotitic layers represented sills, intruded into troctolitic cumulates, and some features were ascribed to post-cumulus metasomatism. A model for the Central Intrusion involved magma rising along a broadly north-south feeder zone, with subsidence and faulting generating debris flows of material within the magma chamber (Figure 6).
In 1997, Rum research was summarised by Henry Emeleus in the comprehensive memoir for the British Geological Survey, Geology of Rum and the adjacent islands. This brought together detailed modern information about the geology of Rum; not only igneous geology, but also the sedimentary successions. More recent work by Mike Hamilton, Lynne Chambers and others has established the age of the Rum layered intrusions as 60.5Ma, with the lavas of western Rum being erupted approximately 0.5Ma later. Pebbles derived from Rum have been found in inter-lava conglomerates on Skye, and the lavas are in turn cut by the 59Ma Cuillin Centre. Thus, we know that magmatism on Rum was well and truly over before the layered intrusions on Skye began to form.
In the later 1990s, Henry Emeleus and Valentin Troll carried out new work the Northern Marginal Zone, and recognised evidence for two caldera cycles: the first involving doming followed by collapse and breccia formation, but with limited accompanying volcanism, while the second cycle was characterised by eruption of voluminous rhyodacitic ignimbrites. Interest in the layered intrusions of Rum has also recently been rekindled, through the application of detailed textural studies which followed on from Donaldson's early work, by the late Bob Hunter, Mike Cheadle and Marian Holness amongst others. For example Marian Holness and co-workers have been investigating the textural maturity of the layered intrusions using dihedral angles between crystals, and crystal size distributions have been used by Brian O'Driscoll and co-workers to quantify very rapid growth times for dendritic harrisitic olivines in the layered intrusions.